
Simulating data processing for an Advanced Ion Mobility
Mass Spectrometer∗

Daniel
Chavarrı́a-Miranda

Applied Computer Science

Brian Clowers
Biological Sciences Division

Gordon Anderson
Environmental Molecular

Sciences Laboratory (EMSL)

Mikhail Belov
Biological Sciences Division

Pacific Northwest National Laboratory
{daniel.chavarria, brian.clowers, gordon, mikhail.belov}@pnl.gov

ABSTRACT
We have designed and implemented a Cray XD-1-based sim-
ulation of data capture and signal processing for an ad-
vanced Ion Mobility mass spectrometer (Hadamard trans-
form Ion Mobility). Our simulation is a hybrid application
that uses both an FPGA component and a CPU-based soft-
ware component to simulate Ion Mobility mass spectrome-
try data processing. The FPGA component includes data
capture and accumulation, as well as a more sophisticated
deconvolution algorithm based on a PNNL-developed en-
hancement to standard Hadamard transform Ion Mobility
spectrometry. The software portion is in charge of stream-
ing data to the FPGA and collecting results. We expect the
computational and memory addressing logic of the FPGA
component to be portable to an instrument-attached FPGA
board that can be interfaced with a Hadamard transform
Ion Mobility mass spectrometer.

1. INTRODUCTION
Many fields in experimental science are moving towards

high-throughput methodologies where scientific instruments
can process large numbers of samples and produce corre-
sponding massive amounts of data. For this reason, it is
becoming increasingly important to perform online process-
ing of the data as it is being produced by the instrument,
without having to wait for data to be captured and then pro-
cessed offline. An effective approach to perform this kind of
streaming, online processing is to use FPGA boards directly
attached to the instrument’s digital data capture ports.

∗This work was funded by the U.S. Department of Energy’s
Pacific Northwest National Laboratory under the Data In-
tensive Computing Initiative. Pacific Northwest National
Laboratory is operated by Battelle Memorial Institute un-
der Contract DE-ACO6-76RL01830.

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
HPRCTA’07, November 11, 2007, Reno, Nevada, USA.
Copyright 2007 ACM 978-1-59593-894-7/07/0011 ...$5.00.

Developing and testing FPGA designs that will be pro-
cessing live streaming data from an instrument requires a
significant design, development and testing effort. It is also
quite difficult to determine beforehand how much area a
particular processing design will occupy and what its per-
formance will be. For this reason, it becomes important to
use a more flexible and less demanding platform for initial
prototyping and testing. Hybrid CPU/FPGA HPC systems
are a suitable platform to develop and prototype processing
algorithms for FPGAs that can be tested under more flexible
software control while still having to deal with most of the
limitations (and benefits) of a realistic hardware platform.
A longer term solution could involve an interface between
the high-throughput instrument and the FPGAs on the hy-
brid system that can handle the streaming of data directly
onto the HPC system. This strategy would enable the use
of the FPGAs on the hybrid system as streaming ports onto
the internal HPC system, which could enable much more
sophisticated hardware and software data processing and
analyses. However, there are many challenges that have to
be conquered: designing adequate hardware interfaces, as
well as enabling real-time software processing on nodes with
attached FPGAs.

We have focused on Ion Mobility mass Spectrometry [7,
3, 11] (IMS). Mass spectrometers can measure the mass-to-
charge ratio of ions present in a physical sample with a high
degree of accuracy and precision. This technique is rou-
tinely applied across a wide range of disciplines including
proteomics, drug discovery, environmental toxicology, and
industrial process monitoring. Ion mobility mass spectrom-
eters measure the composition of samples by applying an
uniform electrical field which accelerates ions: lighter ions
reach the detectors first. While unique information regard-
ing an ion’s size may be determined using IMS, the sensi-
tivity and overall utility of the technique has been limited
due to its inherently low duty cycle. In the traditional signal
averaged (SA) IMS approach, each experimental sequence is
initiated by injecting a narrow packet of ions in the IMS drift
cell. Subsequent experiments may only be initiated once the
slowest moving ion from the previous injection reaches the
detector. Typically the ratio of the ion packet release width
to the total experiment time is ∼ 1%. Consequently, 99%
of the information is lost during a traditional IMS experi-
ment. In order to circumvent this limitation of IMS, multi-

plexing techniques, specifically the Hadamard transform [10]
have been applied. Using these methods the experimen-
tal duty cycle can approach 50% with an added increase in
signal-to-noise ratio (SNR) based upon the inverse trans-
form [7, 17, 12, 19]. The Hadamard transform technique
modulates the incoming ion source by pulsing the input gate
with a predetermined random sequence (closing and open-
ing the gate). The captured data has then been physically
convolved by the Hadamard encoding process and must be
computationally deconvolved in order to obtain the actual
mass-to-charge ratios of the sample. However, applying the
Hadamard transform to increase the instrument utilization
requires higher digital data rates, thus increasing the need
for rapid, online processing. Recently, efforts at PNNL have
produced a novel multiplexed IMS technique based upon the
HT that combines the throughput advantage of the multi-
plexing experiment with an IM-TOF-MS [2, 7]. This paper
presents our work on designing, implementing and evaluat-
ing an FPGA design that simulates the data processing for
an enhanced Hadamard transform IMS mass spectrometer
on a Cray XD-1.

Section 2 provides background information about hybrid
CPU/FPGA platforms and the Hadamard transform tech-
nique. Section 3 describes the algorithms used for HT-IMS
mass spectrometry data processing. Section 4 describes
how we mapped those algorithms and the mass spectrom-
etry data flow onto the Cray XD-1. Section 5 discusses
how our design performs on the XD-1 and how it could
be adapted for online processing on an instrument-attached
FPGA board. Section 6 discusses related work and finally,
section 7 presents our conclusions.

2. BACKGROUND

2.1 Hybrid CPU/FPGA systems
In the recent past, mainstream HPC vendors have started

to incorporate FPGAs into their systems as a means to of-
fer high-performance hardware custom-tailored for applica-
tions, while still retaining some of the flexibility of software.

Cray developed the XD-1 system [8, 18] as a distributed
memory HPC system. On the XD-1, dual-processor SMP
nodes are connected through a high-speed proprietary Cray
interconnect named RapidArray [9], which can transfer data
between the nodes and the network switches at 1 GBps
(unidirectional). Some nodes contain attached Virtex II-
Pro FPGAs (V2P50), which are connected exclusively to
the local processors through a Rapid Array link. The peak
bandwidth between the local processors and the FPGA is
rated at 1.422 GBps (unidirectional). Each FPGA has four
directly accessible memory modules of 4MB each, as well
as roughly 512KB of internal, high-speed memory (Block-
RAM). Figure 1 shows a diagram of a local XD-1 node.
The FPGA (with its local memory banks) is connected to
the local memory subsystem and to the processors through
the RapidArray processor, which also provides connectivity
to other remote nodes.

Silicon Graphics (SGI) developed the SGI Reconfigurable
Application Specific Computing (RASC) [14] platform by in-
tegrating an FPGA board, into their NUMAlink-4 intercon-
nect fabric, as part of a shared-memory NUMA Altix sys-
tem.

SRC Computers has developed their MAP systems [16,
15] over several years. In their current systems, dual-CPU

SMP boards are connected to FPGA boards through a high-
speed proprietary interconnect (HiBar).

All of these systems share common characteristics with
respect to the way they intend the application to use the
hardware accelerators: input data should be transferred to
the on-board memory banks, the FPGA will compute us-
ing that input data and write the results back to on-board
banks as well. After the results are ready, they can be trans-
ferred back to the processor’s memory for further software
processing. The systems differ significantly in the way they
implement this paradigm, in particular with respect to data
transfers.

2.2 Hadamard Transform
The encoding random sequence used to control the ion

gate on the mass spectrometer can be represented as a Sim-
plex matrix. Simplex matrices are composed of ones and ze-
ros and have dimensions N ×N , where N = 2m− 1,m ∈ N.
The number of ones and zeros in any particular row is ap-
proximately equal, thus accounting for the 50% utilization
achieved by mass spectrometers using this technique.

The dimensional size (N) or order of the transform is
chosen based on the range of flight times being used in the
instrument. All Simplex matrices are either right-circulant
or left-circulant, which means that the elements of each row
of the matrix are equivalent to the elements of the previous
row of the matrix shifted by one column to the right (left).
The physical convolution of the data is equivalent to:

y = SNx+ e (1)

where y is the data vector observed at capture time, SN

is the selected Simplex matrix of dimensional size N , x is
the spectrum data vector which has been obfuscated by the
physical convolution, and e is a time-independent noise vec-
tor. More details on Simplex matrices and their use in the
Hadamard encoding process can be found in [12].

To perform the computational deconvolution of the cap-
tured data (y), the inverse of the Simplex matrix (S) used
in the encoding must be utilized. The captured data vector
is multiplied by the inverse Simplex matrix (S−1

N) to obtain
the expected ion mobility spectrum (z):

z = S−1
N y (2)

3. HT-IMS MASS SPECTROMETRY PRO-
CESSING

Processing mass spectrometry data on an FPGA attached
to the digital data capture ports of a high-throughput HT-
IMS mass spectrometer involves the following steps:

1. Organize the data stream as a set of scans that con-
stitute a frame

2. Accumulate a predetermined set of frames into an ac-
cumulated frame

3. Deconvolve the data using the appropriately parame-
terized Inverse Hadamard Transform

We focus our discussion on the computational activities
involved in each step and will not address the hardware in-
terfacing issues related to data capture and streaming. Fig-
ure 2 illustrates the overall data processing described pre-
viously. The streaming frame data is organized as a set of

FPGA

QDR1 QDR2

QDR3 QDR4

3.2 GB/s
(each)

RapidArray
processor

3.2 GB/s

3.2 GB/s

HyperTransport
to SMP

2 GB/s

To other
nodes

Figure 1: Cray XD-1 Hybrid System Diagram

SRAM bank
(accumulated frame)

frame data
accumulation

Transformed
frame

inverse
transform

streaming
frame data

Figure 2: Overall instrument process and data flow

scans and accumulated onto the accumulated frame, which
resides in an SRAM bank. The inverse transform process
outputs the results of the transformation onto a different
SRAM bank. The figure includes two visual representa-
tions of the data in the accumulated frame (left) and the
deconvolved frame (right) after processing using the Inverse
Hadamard Transform.

3.1 Data Organization
Streaming data coming out of a IMS mass spectrome-

ter corresponds to a set of mass-to-charge ratios with flight
times organized into T bins. Each of the T bins can detect
ions that traverse the electrical field in certain time inter-
val. Each bin has an associated counter that counts the
number of ions that “reached” the bin during the sampling
time. A scan corresponds to the counters for each of the T
bins. A frame corresponds to a fixed, but arbitrary number
of scans S. A frame can be interpreted as a matrix where
scans correspond to columns of contiguous data. The num-
ber of elements (bins) in a scan depends on the number of
actual physical detectors present in a particular type of mass
spectrometer.

A frame with S scans of T bins each can be more formally
represented as:

F = {fi,j : 1 ≤ i ≤ T, 1 ≤ j ≤ S} (3)

where fi,j is the i-th element in scan j.
The number of scans in a frame is dependent on the par-

ticular type of instrument being used as well as on the par-
ticular experimental setup. For example, for HT-IMS ex-
periments it is a requirement to have the number of scans
per frame be a fixed multiple of the order of the Hadamard
transform. This fixed multiple is called the oversampling
factor and it is derived from the minimum length of time
needed to have a valid experimental run: the mass spec-
trometer might not produce accurate results if the samples
are not processed for a sufficient length of time. For exam-
ple, in a particular experimental setup, the time to process
one element of the sample is 100 µs, if we are using a 5-bit
Hadamard sequence (31 elements), then the time to process
one full sequence would be 3.1 ms which is not enough to
guarantee accurate results on an HT-IMS mass spectrome-
ter. For this reason an oversampling factor of 20 is used to
produce experiments that execute for 62 ms (31×20×100µs).

3.2 Frame accumulation
In order to reach desired experimental sensitivities, stream-

ing data corresponding to the same biological sample must
be accumulated over a number of frames. We refer to the
accumulated data set as an accumulated frame. Reasons
for accumulating the data can include increasing the ob-
served signal strength above certain threshold. Streamed
frames can be accumulated in place given the right hard-
ware support1. More formally, an accumulated frame can
be described as:

A =

(
ai,j =

MX
k=1

fk
i,j : 1 ≤ i ≤ T, 1 ≤ j ≤ S

)
(4)

where M is the total number of frames to accumulate and
fk

i,j is the i-th element in the j-th scan of frame k.
1Dual-ported memory systems

3.3 Data Deconvolution
After the desired number of frames have been processed

into an accumulated frame, it can be deconvolved using the
inverse Hadamard transform to obtain the real ion mobil-
ity spectrum of mass-to-charge ratios (as discussed in Sec-
tion 2.2). The deconvolution of the data involves the prod-
uct of elements of the accumulated frame by the elements of
the Inverse Transform matrix.

The computation of an element of the transformed (de-
convolved) frame R is as follows:

R =

(
ri,j =

2m−1X
k=1

ah(i),jsk,g(j)

)
(5)

where 2m− 1 is the order of the inverse Hadamard trans-
form, ai,j is an element of the accumulated frame, h(i) = ci
is a scaling function based on the oversampling factor c, si,j

is an element of the inverse transform matrix (coefficient
matrix), and g(j) = j mod 2m − 1 is a translation func-
tion from the accumulated frame coordinate space into the
smaller inverse transform matrix coordinate space.

As can be observed from Equation 5, the inverse transform
involves computing a dot product between sparse elements
of a column of the accumulated frame (ah(i),j) and a column
of the inverse transform matrix (sk,g(j)). The elements in
the accumulated frame column are separated by a distance
of c, which is the oversampling factor.

4. SIMULATING AN HT-IMS MASS SPEC-
TROMETER

To assess the computational and design challenges, as
well as hardware requirements for HT-IMS processing as
described in Section 3, we have implemented a simulation
of HT-IMS streaming processing on a single FPGA node of
a Cray XD-1. We used VHDL for the FPGA portion of our
simulation and ANSI C for the software portion.

As described in [4], the FPGA board appears as a memory-
mapped device on a 128 MB window of a Cray XD-1 node.
The software interacts with the FPGA design through stan-
dard load and store memory operations, as well as through
calls to a specialized interface library (ufplib). The user
logic on the FPGA determines how to respond to software
operations on the 128 MB memory window. The software
operations appear as transactions on the RapidArray chan-
nel and the user logic is in charge of interpreting those trans-
actions as it sees fit.

Our design for simulating an HT-IMS mass spectrometer,
maps three 2MB regions2 of memory in the 128 MB memory
space:

• 16 KB mapped onto a section of BlockRAM organized
as a 1282 matrix, used to store the elements of the
inverse transform matrix (coefficient matrix). Each el-
ement in the coefficient matrix is a signed 8-bit quan-
tity.

• 64 KB mapped onto a 8192-element 64-bit FIFO used
to store the data elements that are “streaming” onto
the FPGA device through the RapidArray channel.

2Transactions on addresses that are not mapped by the logic
design are simply discarded.

• 18 64-bit registers used to control the design’s execu-
tion (start/end streaming) and to provide parameters
such as the number of frames to accumulate and the
length of each scan.

Our design uses a 4 MB SRAM memory bank on the
FPGA board as the accumulation frame and it utilizes a
separate 4 MB SRAM memory bank as the target for the
inverse transform. Each data element on a frame is a 16-
bit integer and our test dataset was captured using a 5-bit
Hadamard sequence (31 elements) with an oversampling fac-
tor of 20, which leads to 620 (31×20) scans per frame. On a
4 MB memory bank, we can place 620 scans of 3380 16-bit el-
ements each, for a total of 4,191,200 bytes of memory. Since
the SRAM memory banks on the XD-1’s FPGA boards are
addressable as 64-bit elements (524,288 elements), we orga-
nize the 16-bit scan data elements in groups of 4.

4.1 Data set
The example data used were acquired using the IM-TOF-

MS system at PNNL. By applying a 5-bit Hadamard se-
quence, the tryptic digestion of bovine serum albumin was
evaluated using the PNNL IM-TOF system. The data was
acquired using a custom software package and 1 GHz ADC
(analog-to-digital converter) PCI card (Aquiris). The simu-
lated data were sampled from the raw instrument data file to
assess the computing hardware requirements for the FPGA
transform of the raw data.

Our sample data set consists of 100 frames of 620 scans of
3380 elements each. The raw data file had a larger number
of elements per scan (98000). We used a decimation pro-
cess in which we take the largest data element from every
d 98000

3380
e = 29 original elements, as a representative element

for the simulated data set. This enables us to construct
data set which has most of the original biological proper-
ties, while reducing the data size to levels compatible with
the platform’s limitations.

4.2 Streaming and accumulation
In order to simulate the data capture process for an HT-

IMS mass spectrometer, our software driver, after loading
the design on the FPGA, sets parameters such as the number
of frames to accumulate, as well as setting up the necessary
pointers to memory-mapped regions.

The next step is to load the simulated data set into mem-
ory and then proceed to stream the data through the Rap-
idArray channel as a set of 64-bit elements to the memory-
mapped region corresponding to the 8192-element FIFO de-
scribed previously. The FIFO was generated using Xilinx’s
coregen tool and configured to use BlockRAM elements for
its storage. Since we are streaming the scan elements in
groups of 4 (4 16-bit elements per transaction), a scan con-
sists of 845 (3380/4) elements. The FIFO can store up to
9 (845 × 9 = 7605) complete scans without elements being
consumed.

The logic on the FPGA, reacts to the data stream being
received over the RapidArray channel and proceeds to in-
terpret the data as scans of the described size. The logic
expects that a certain number of frames (with 620 scans
per frame) be streamed through the RapidArray channel
before further processing can be done. The initial 620 scans
(complete frame) are copied into contiguous regions of the
4 MB SRAM bank designated as the accumulation frame.

Once these scans have been copied to the SRAM bank, fur-
ther scans have to be added together with the data located
in the SRAM bank and written back to the same location.
Figure 3 illustrates the accumulation process: scans being
streamed over the RapidArray channel are to be added with
the scans in the corresponding positions on the accumulated
frame, i.e. scans 1a and 1b will be added elementwise and
the result will be placed in the same position on the SRAM
bank which scan 1a occupies (scan 1a was the first streamed
scan).

The XD-1 FPGA boards support simultaneous writes and
reads to the same SRAM memory bank (with read-after-
write semantics for the same address), in this manner the
design can use the same memory bank to store the accu-
mulated frame. To decouple the reading of previous scans
(due to the SRAM bank’s 8-cycle latency) and the writing
of new, accumulated scans our design uses another 8192-
entry 64-bit FIFO (read FIFO). Our design reads previously
written scans from the SRAM bank and stores them in the
FIFO. When a new streamed scan arrives (after the first full
frame of scans) the data elements from the streamed scan
are added with the corresponding data elements in the read
FIFO. The result is then written directly onto the appropri-
ate addresses of the SRAM bank. We carefully coordinate
and synchronize our read and write logic processes to elim-
inate data races and other incorrect behavior.

4.3 Inverse transform
As described in Section 3.3, once the desired number of

frames has been accumulated into the designated SRAM
memory bank, the frame can be deconvolved using the in-
verse Hadamard transform onto a target SRAM memory
bank (cannot be done in place due to data reuse patterns).
We have implemented the computation of the inverse Hadamard
transform in a highly parametric manner: just changing a
couple of constant parameters enables the computation of
inverse transform of different orders (sequence length). Our
current data set uses a 5-bit sequence (31 elements), but we
have successfully tested our design with 7-bit sequences (127
elements) as well. The computational core of the algorithm
involves the product and addition of elements of the accu-
mulated frame and the inverse sequence matrix. We use
a fully pipelined Multiply-and-Accumulate (MAC) circuit
generated by Xilinx’s coregen tool for this purpose. The
MAC is parameterized to add 31 products and then output
the result.

Each element in the accumulated frame is an unsigned 16-
bit wide quantity (ai,j), each element in the inverse sequence
matrix is a signed 8-bit quantity (si,j). The full precision
result of the product of the 16-bit quantity ai,j by the 8-bit
quantity su,v is a 24-bit quantity. The inverse transform al-
gorithm will need to add 31 of those products, thus requiring
a maximum precision of 29 bits (24 + dlog2 31e). However,
the elements of the inverse matrix should be fractional val-
ues since the original sequence matrix is a Simplex matrix
composed of only ones and zeroes. The 8-bit signed ele-
ments stored in the inverse matrix can then be interpreted
as the numerators of fractions, where the inverse sequence
length (2m − 1, 31 in this case) is the denominator. We
can then use the rounding feature of Xilinx’s MAC circuit
to produce the final result. This result is rounded using
convergent rounding (round-to-nearest even) to 16 bits.

Computation of 4 elements in parallel: Since each el-

1b

streaming
scans

2b3b 1a 2a 3a

frame data
accumulation

!

"

Figure 3: Scan streaming and accumulation

ement transferred through the RapidArray channel is 64-bits
wide, and the SRAM memory banks are also addressable in
64-bit units, it is convenient and efficient in bandwidth us-
age terms, to pack 4 16-bit data elements into a single 64-bit
storage element. These 4 elements are contiguous elements
of a single scan. More precisely, in terms of Equation 5, we
are computing ri,j , ri+1,j , ri+2,j and ri+3,j in parallel, for
a particular value of i and j. The corresponding element of
the inverse sequence matrix for all the r values is the same.
This is equivalent to the compiler transformation known as
loop unrolling.

Memory addressing to support parallel computa-
tion: In order to keep the computational pipelines fully uti-
lized, we need to have data elements available for processing
on every clock cycle. To guarantee this, we carefully crafted
the inverse transform’s memory addressing processes. We
decoupled the reading of the accumulated frame and inverse
transform matrix elements, from the writing of results. The
read process generates the correct addresses and handles
the SRAM and BlockRAM memory access latencies in or-
der to provide a 64-bit word of data from the SRAM bank
(accumulated frame) and an 8-bit word of data from the
BlockRAM (inverse sequence matrix). We also decoupled
the results computation itself from the data reading and re-
sults writing process by using VHDL’s hierarchical module
capabilities. We replicate the computational module 4 times
and feed their input signals with the corresponding 16-bit
elements from the 64-bit word, all of the 4 module instances
receive the same 8-bit value for the inverse sequence matrix
input signal.

Figure 4 presents a C code fragment from the inner two
loops of the inverse transform. All memory accesses re-
quired for the inverse transform algorithm are regular in the
sense that they are only functions of the array indices used:
result index and tof index for the accumulated frame ar-
ray (accum) and row index and col index for the inverse se-
quence array (inv mat). The for (k = 0; k < NUM INST;

k++) loops represent the places where these loops can be
unrolled (by 4 in our example) in order to compute several
instances of the transformed array in parallel. To simplify
the presentation of the code, we have omitted initialization
and control statements.

4.4 Results writeback
Once the transform has been performed for a dataset the

results must be made available on the node’s memory for
further software processing (output to a file, output for vi-
sualization). On the XD-1 platform, having the CPU use
the memory mapped regions to read data from the FPGA’s
memory banks is very slow due to the fact that there are
limitations in the AMD Opteron CPU and the RapidArray
channel that prevent the use of fast, burst read operations
to access the FPGA’s resources. The bandwidth of read op-
erations from the CPU to FPGA resources can be as much
as 200 times lower, when compared to write operations.

For this reason, the FPGA design must implement logic
to enable it to write the computation’s results back onto the
CPU’s memory. The FPGA design can utilize efficient burst
write operations onto the Opteron’s memory space.

Figure 5 illustrates the overall design and data flow in our
Cray XD-1 FPGA implementation: streaming frame data
is received by the FPGA logic over the RapidArray channel
from the CPU, the accumulation process uses a BlockRAM-
based FIFO to organize the data into scans which are then
accumulated and stored into a dedicated QDR SRAM bank
(QDR 1), the inverse transform process uses the accumu-
lated frame stored in QDR 1 together with the coefficient
matrix data stored in BlockRAMs to compute the result-
ing transformed frame which is stored onto a second QDR
SRAM bank (QDR 2). Finally, the resulting transformed
frame is written back to the CPU’s memory space through
the RapidArray channel.

5. RESULTS AND DISCUSSION
We have implemented the design described in Section 4

on a single node of a Cray XD-1. The full implementation of
the design uses 22% of the slices (5201 out of 23616) of the
Virtex II-Pro XC2VP50 FPGA on the XD-1’s node. It uses
36% of the BlockRAM elements (85 out of 232) and only
1% of the 18 × 18 multipliers (4 out of 232). The design
also uses two of the four 4 MB QDR SRAM memory banks
available on the XD-1 node.

The user logic by itself, not including the necessary Cray
interface cores to the RapidArray channel and to the SRAM
banks, uses 2925 slices and 68 BlockRAM elements. The de-

do {

do {

for (k = 0; k < NUM_INST; k++)

result[k][col_index] += accum[result_index][tof_index + k] *

inv_mat[row_index][col_index];

result_index += oversampling_factor; /* 20 in our example */

row_index++;

} while (result_index < number_of_scans);

col_index++;

} while (col_index < sequence_length); /* 31 in our example */

...

for (k = 0; k < NUM_INST; k++)

result_array[result_index][tof_index + k] = result[k][col_index];

...

Figure 4: C Code fragment for Inverse Transform

Streaming
Frame Data

(Rapid Array)

QDR 1
(accumulated frame)

A
ccum

ulation FIFO
(B

R
A

M
)

FPGA

Q
D

R
 2

(transform
ed fram

e)

Coefficient Matrix
(BRAM)

Accum
ulation

Process
Inverse Transform

Process
Transformed
Frame Data

(Rapid Array)

Figure 5: Overall design and data flow

sign achieved a clock frequency of 142 MHz out of a maxi-
mum achievable frequency of 199 MHz. The maximum data
transfer bandwidth on the XD-1 node is 1.422 GBps, how-
ever this bandwidth can only be achieved under a design that
operates at the maximum frequency of 199 MHz. Designs
operating at a lower clock frequency will achieve a propor-
tional bandwidth. In our case, the data rate we achieved is
1.01 GBps.

The data rate from the CPU to the FPGA resources is the
maximum 1.01 GBps, however the data rate from the FPGA
writing back to the CPU’s memory space is 965 MBps. This
difference requires further investigation.

5.1 Streaming flow control
Our design has limited space for elements being streamed

by the CPU to the FPGA. We used a 8192-entry 64-bit FIFO
for the purpose of storing the elements sent from the CPU
to the FPGA before they are accumulated onto the current
frame. The FPGA logic will wait until at least one full scan
(845 64-bit elements) is available on the FIFO before con-
suming those elements as part of the accumulation process.

If the relative speed of the consuming process is slower with
respect to the rate that the data is being streamed through
the RapidArray channel it can be the case that the FIFO
will be full and cannot accept more data. We expose a reg-
ister to the software interface on the CPU, that contains
the current number of elements in the streaming FIFO. If
the FIFO is almost full, the software will busy-wait until at
least one complete scan can be accepted. This flow control
overhead reduces the effective bandwidth of the data stream
to approximately 900 MBps, which we believe is acceptable
for the purposes of our simulation. Also, as described in
Section 5.3, the streaming data interface will have to be
rewritten for an instrument-attached FPGA board.

5.2 Performance under the test dataset
As described in Section 4.1, our dataset consists of 100

frames of 620 scans each, with 3380 16-bit elements per
scans. The total size of the dataset is thus 400 MB. The
streaming time at approximately 900 MBps is 0.46 seconds,
which includes the ongoing frame accumulation processing.
The inverse transform process for the accumulated frame

takes 0.11 seconds, and is twice as fast as executing the in-
verse transform algorithm on the host 2.4 GHz AMD Opteron
CPU. The data writeback time for the result of the inverse
transform is 0.004 seconds.

The lower processing time for the inverse transform cal-
culation compared to the streaming and accumulation en-
ables the design to fully overlap the calculation of the inverse
transform for the previous accumulated frame while the ac-
cumulation for the current frame set is ongoing.

5.3 Expectations on porting the design to a
real instrument

One of the main objectives of our work was to imple-
ment the critical algorithmic components for HT-IMS mass
spectrometry processing on a realistic FPGA platform, in
order to quantify the achievable performance in terms of
clock frequency and data rates. We also wanted to under-
stand the resource usage requirements, in order to determine
what particular FPGA platform might be suitable to use for
an instrument-attached board. In particular, we were able
to assess required memory bank sizes for realistic data sets
by extrapolating from what the XD-1 platform can provide
(4 MB memory banks): a full frame of the size described
in Section 4.1 will require ∼ 116 MB of memory, which is
readily available in many commercial FPGA boards.

There are several components of our design that are fully
Cray XD-1-specific, such as the components that interface
with the RapidArray channel to support data transfers be-
tween the CPU and the FPGA on the Cray XD-1 node,
as well as the components that expose FPGA resources as
memory-mapped objects to the software layers. However,
the design modules that deal exclusively with the accumu-
lation and inverse transform computation and the modules
that handle reading and writing from the SRAM memory
banks are likely to be portable to other FPGA platforms
with small adaptations.

One of the most challenging parts in interfacing with a
real HT-IMS instrument, will be in handling the high-speed
streaming data coming from the instrument, as well as the
specialized Analog-to-Digital Converters (ADC) used for such
interfaces.

6. RELATED WORK
There is a large body of work on the application of the

Hadamard Transform to communications, coding and im-
age processing applications [1, 6, 5, 13]. Some of the im-
plementations have been done on FPGAs to reduce power
requirements and improve performance [1].

However, the usage of the Hadamard transform in other
fields differs significantly from how it is used in mass spec-
trometry, the main difference being the use of an oversam-
pling factor which effectively spreads the values of the vec-
tors to be transformed across a strided space. The matrices
used for Hadamard transform mass spectrometry are also
not full Hadamard matrices but Simplex matrices.

7. CONCLUSIONS
We have demonstrated a Cray XD-1-based design to sim-

ulate high-speed processing for advanced mass spectrom-
eters. Our research has determined that it is feasible to
use FPGAs for processing mass spectrometry data at very
high rates (Gigabyte per second range). We have also shown

that is possible to implement domain-specific signal process-
ing algorithms (inverse Hadamard transform) to operate in
conjunction with high-speed data capture. Our design has
modest requirements in terms of FPGA resources. We be-
lieve it should be possible to further optimize the logic to
obtain higher clock frequencies.

Our research has also provided insight into what design
components must be fully rewritten for an instrument-attached
FPGA platform, as well as what components could be adapted
quickly from our Cray XD-1 prototype.

8. REFERENCES
[1] S. K. Bahl and J. Plusquellic. FPGA implementation

of a fast Hadamard transformer for WCDMA. In
FPGA ’03: Proceedings of the 2003 ACM/SIGDA
eleventh international symposium on Field
programmable gate arrays, pages 237–237, New York,
NY, USA, 2003. ACM Press.

[2] M. Belov, M. Buschbach, D. Prior, K. Tang, and
R. Smith. Multiplexed Ion Mobility Spectrometry -
Orthogonal Time-of-Flight Mass Spectrometry. Anal.
Chem., 79(6):2451–2462, 2007.

[3] A. Brock, N. Rodŕıguez, and R. Zare. Hadamard
Transform Time-of-Flight Mass Spectrometry. Anal.
Chem., 70:3735–3741, 1998.

[4] D. Chavarŕıa-Miranda and A. Márquez. Assessing the
Potential of Hybrid HPC Systems for Scientific
Applications: a case study. In CF ’07: Proceedings of
the 4th international conference on Computing
frontiers, pages 173–182, New York, NY, USA, 2007.
ACM Press.

[5] N. Chen, B. Shi, and N. Wang. Fast communication:
A block splitting technique for fast 2D Walsh
transform. Signal Process., 87(5):1163–1168, 2007.

[6] S.-C. Chu, Z.-M. Lu, and J.-S. Pan. Hadamard
transform based fast codeword search algorithm for
high-dimensional VQ encoding. Inf. Sci.,
177(3):734–746, 2007.

[7] B. H. Clowers, W. F. Siems, H. H. Hill, and S. M.
Massick. Hadamard Transform Ion Mobility
Spectrometry. Anal. Chem., 78(1):44–51, 2006.

[8] Cray XD-1 Datasheet.
www.cray.com/downloads/Cray_XD1_Datasheet.pdf.

[9] Direct Connected Processor (DCP) Architecture.
www.cray.com/products/xd1/architecture.html.

[10] M. Harwit and N. J. Sloane. Hadamard Transform
Optics. Academic Press, New York, NY, 1979.

[11] J. Kimmel, F. Fernández, and R. Zare. Effects of
Modulation Defects on Hadamard Transform
Time-of-Flight Mass Spectrometry (HT-TOFMS). J.
Amer. Soc. Mass Spec., 14:278–286, 2003.

[12] J. R. Kimmel. Continuous, Multiplexed Time-of-Flight
Mass Spectrometry of Electrosprayed Ions. PhD thesis,
Stanford University, December 2004.

[13] R. Raulefs, A. Dammann, S. Sand, S. Kaiser, and
G. Auer. Rotated walsh-hadamard spreading with
robust channel estimation for a coded mc-cdma
system. EURASIP J. Wirel. Commun. Netw.,
2004(1):74–83, 2004.

[14] SGI Reconfigurable Application Specific Computing
technology. www.sgi.com/products/rasc.

[15] M. C. Smith, J. S. Vetter, and X. Liang. Accelerating
Scientific Applications with the SRC-6 Reconfigurable
Computer: Methodologies and Analysis. In IPDPS
’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 3, page 157.2, Washington,
DC, USA, 2005. IEEE Computer Society.

[16] SRC MAP product line.
www.srccomp.com/Products.htm.

[17] A. Szumlas, S. Ray, and G. Hieftje. Hadamard
Transform Ion Mobility Spectrometry. Anal. Chem.,

78(1):44–51, 2005.

[18] J. L. Tripp, A. A. Hanson, M. Gokhale, and
H. Mortveit. Partitioning Hardware and Software for
Reconfigurable Supercomputing Applications: A Case
Study. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 27, Washington,
DC, USA, 2005. IEEE Computer Society.

[19] M. Wetterhall. Hadamard Transform Time-of-Flight
Mass Spectrometry. Technical report, Stanford
University, 2001.

